

Scottish Aquaculture Innovation Centre

The Future of Food

scottishaquaculture.com

Zero Waste Scotland, 19 November 2020

The future of food – the Scottish opportunity

Sam Houston, 19th November 2020

SAIC's innovation programme is delivered through three key workstreams:

Content

Focus on the salmon sector

- 1. Overview of Scotland's salmon sector
- 2. Protein and fish nutrition
 - 1. Fundamental concepts
 - 2. Current protein sources
 - 3. Evaluation of ingredients
- 3. Circular economy and aquaculture

2017 UK aquaculture – value share

Four leading salmon producers

Norway, Chile, Scotland and Canada

- Salmon production of the five leading producers, with peak numbers illustrated
- Global Atlantic salmon production in 2018 ~
 2.44 million metric tonnes (FAO, 2018)
 - Leading five countries **94%**
- 2019: first time > 200,000 tonnes produced by Scotland

Ambition and values

Scottish Salmon
A Better Future For Us All

Aquaculture Growth to 2030

- Aim to double the value of aquaculture to Scotland's economy by 2030
- Establish as core growth sector in Scotland
- 19.000 iche in 2030

Aquaculture Growth to 2030

rship group for

on sites to trial ogies ss Rublished 10 November 2020.

Outlines environmental and social commitments:

- 100% renewable energy use
- A circular economy for organic waste
- 100% sustainable feed ingredient
- 100% reusable, recyclable or biodegradable packaging
- Explore the potential of new technologies to capture fish waste from marine farming

Scottish salmon production and forecast

- Scottish salmon production
 (Marine Scotland 2020) with a forecast until 2030
- Rate of growth = 3,196 tonnes per year
- Model suggests mean annual production in 2030 = 220,762

tonnes

• Or a CAGR of **2.0** %

TOP 10 PRODUCTS					
			Change		
	2019	Value	Value (%)	Volume (%)	
Whisky	£5.0bn	£209.6m	4.4%	2.0%	
Salmon	£832.6m	£187.7m	29.1%	24.6%	
Chocolate	£775.7m	£24.7m	3.3%	6.2%	
Cheese	£707.7m	£32.1m	4.8%	9.3%	
Gin	£674.9m	£54.6m	8.8%	9.1%	
Wine	£661.0m	£29.3m	4.6%	-16.8%	
Beef	£584.7m	£45.3m	8.4%	23.1%	
Pork	£583.1m	£117.4m	25.2%	7.0%	
Beer	£500.1m	£10.7m	2.2%	1.0%	
Breakfast cereals	£483.5m	£1.4m	0.3%	2.6%	

FY 2019 UK food & drink

TOP 10 PRODUCTS Whisky £1.5bn -£695.1m -31.1% -26.8% С S Ρ B

hocolate	£315.4m	-£38.0m	-10.7%	-11.1%
almon	£307.0m	-£93.4m	-23.3%	-27.0%
heese	£304.5m	-£44.6m	-12.8%	-13.7%
ork	£300.6m	£44.8m	17.5%	2.4%
eef	£257.3m	-£18.7m	-6.8%	1.4%
in	£253.0m	-£80.8m	-24.2%	-21.3%
reakfast cereals	£244.7m	-£1.2m	-0.5%	16.4%
/ine	£239.5m	-£117.6m	-32.9%	-27.0%
ish	£207.2m	-£5.2m	-2.4%	6.9%

Change

% Value

% Volume

H1 2020 UK food & drink

2017 Scotland values	Value (ex-farm)	Tonnes	Value share
Atlantic salmon	£1,050,976,780.00	189,707	96.96%
Sea mussels	£10,092,432.00	8,232	0.93%
Rainbow trout	£19,446,550.00	7,637	1.79%
Pacific cupped oyster	£2,015,000.00	403	0.19%
Marine fishes - not elsewhere identified	£947,100.00	77	0.09%
Brown trout	£165,300.00	57	0.02%
European flat oyster	£120,000.00	16	0.01%
Queen scallop	£33,000.00	11	0.00%
Great Atlantic scallop	£91,632.00	6	0.01%
Other Salmonids	£12,470.00	4.3	0.00%
Grand total	£1,083,900,264.00	206150.3	

UK EXPORTS

Salmon producers

Trout producers

da

vnfresh KAMES

Aquafeed manufacturers

Atlantic salmon lifecycle and production

Spawn Brood - Parr -Smolt Transfer Growth phase to sea in sea Processi Slaughtering

Production, Mowi 2019

Lifecycle, Fidra 2020

Nutrition – the fundamentals

Animals need **nutrients** – **ingredients** contain **nutrients** – mix and match the **ingredients** to supply the right **nutrients**

(Glencross, Tocher)

Aquafeeds

Science into a pellet: density, smell, integrity, digestibility, binding, vacuum filling with oil, extrusion, formulation, grinding, mixing, quality control, animal performance...

- Produced by extrusion
- Must supply all nutrients
- Must taste right
- Must be the right density to sink
- Must bind but not be undigestible

Some definitions

Term	Definition
Ingredient	Material used in a feed
Formulation	A recipe of ingredients
Nutrient	A chemical eaten that is of benefit to the organism
Essential	A nutrient that cannot be synthesised by an animal but is needed
Requirement	Amount of nutrient needed in feed for optimal growth and wellbeing
Specification	Minimal amount of a nutrient in a feed
Amino acid	Building block of proteins
Crude	The nutrient content of an ingredient or feed
Digestible	The biologically accessible portion of the crude nutrient
Absolute	'Real' quantities (formulations are ratios, fish eat an absolute quantity)
Relative	Ratios, fractions, percentages

Fundamental principles

Glencross 2017, and those before

1. Nutrition is biochemistry and physiology

There are no magic ingredients

2. Conservation of energy...

First thermodynamic principle

- 3. Conservation of mass, only transferred or rearranged
- 4. An organism can only grow as fast as the 1st limiting nutrient allows (Liebig's law)
- 5. Use of nutrients depend on biochemical energy

Which nutrients are <u>essential</u> to animals?

Fish need energy

Chemical energy exists in the carbon bonds of proteins, lipids/fats and carbohydrates

- Fish derive energy mainly from protein and fat feed intake is according to energy requirement
- **Relative** energy requirements increase with the fish mass
- Carnivorous fish should not be fed large quantities of carbohydrates
- The first nutrient to specify in a diet is the energy content

Energy

Fish need protein

Protein is the term for bulk amino acids

- Fish grow indeterminately
- Fish use protein for both energy and growth
- Protein requirements are dependent on dietary energy level
- Protein requirement is <u>relatively</u> higher in smaller fish
- Smaller fish grow relatively faster than larger fish
- <u>Relatively</u> is emphasised because big fish eat more but nutrients are supplied in different ratios
- Ingredients have varying AA profiles

Protein in animals and fish

It is not good for an organism to engage in circular economy principles

Basics of ingredient selection/evaluation

	Selection process	Description
1	Characterisation	Produce a nutrient specification
2	Palatability	Will fish eat it? Does the ingredient influence feed intake?
3	Digestibility	Do any ingredient properties prevent the fish's digestive system from absorption of nutrients – in our case, protein?
4	Utilisation	2 & 3 tell the nutritionist how to do this. Protein utilisation = growth – a feeding trial is executed and the results define how well the animal uses the ingredient (PER: Protein Efficiency Ratio)
5	Health impacts	Does the ingredient influence fish health? And how?
6	Processing effects/functionality	Physical influence on the pellet characteristics or extrusion process
7	Influence on product quality	Product feel and taste influence

Soybean

Peanuts

Krill

Ingredients in aquafeeds Rapeseed Herring Cottonseed Cereal glutens Field peas Avian offal Faba beans Lupins Microbial protein GMO grains

Mammalian offal

Insects

Blood proteins

Fish offal

Anchoveta

Current aquafeeds

Data available: Mowi, Lerøy and Bakkafrost

	Marine material Vegetable		
Company	%	material %	
Mowi	24	69	
Bakkafrost	48	48	
Lerøy	29	69	

Derived from 2019 corporate sustainability reports

Protein v. energy demands – Atlantic salmon

Amino Acids: salmon requirements

Need to know

- How much do salmon eat?
- How much of what salmon eat needs to be protein?

(Glencross lectures 2017)

Don't forget taurine!

Protein requirements of the sector in Scotland

- Aquafeed market in Scotland is worth ~
 £260m
- Salmon > 1kg require 39 % crude protein (34% @ digestibility = 0.9)
- Finfish farmed in Scotland (2019) required
 ~100,000 tonnes of protein

Circular economy and protein

What is the salmon sector's place in a circular economy?

Salmon farming inputs and outputs

INPUTS

- Raw materials of feed (marine, terrestrial, biotech)
- Energy
- Equipment (sites infrastructure, vessels, landbased facilities, processing and RAS systems)
- Packaging
- Services
- Medicines

OUTPUTS

- Salmon
- Some mortalities
- Processing wastes
- Environmental discharges
- Medicinal discharges
- End-of-life equipment (pens, nets)
- Packaging (in particular poly boxes)

Circular economy

Principles for an individual actor:

- Minimise waste and do something with unavoidable waste
- Use waste from other sectors

In terms of protein:

 Implied duty to use protein from others' waste streams as the number one choice

This minimises the demand for other sources of protein.

Passing nutrients through animals does not capture everything.

Ellen MacArthur Foundation

Conclusions

- Animals are not perfect converters of protein
- In open-pen salmon farming excretory nitrogen (ammonia) is lost to the environment
- Aquafeeds need to maintain strong performance
- Seek out by-products for inputs efforts are underway in fishery by-product utilisation
- Seek out buyers for outputs

TALK TO US

Whether you're looking for a connection, need funding support, want to find out about our training programmes, or would like to make use of our extensive network, we're here to help.

01786 278318

info@scottishaquaculture.com

Scottish Aquaculture Innovation Centre, Unit 19, Scion House, Stirling University Innovation Park, Stirling FK9 4NF

Engage with us on our social media channels +

